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The heated laminar vertical jet 

By R. S. B R A N D  A N D  F. J. LAHEY 
Mechanical Engineering Department, University of Connecticut, Stoma, Connecticut 

(Received 1 July 1966 and in revised form 23 February 1967) 

The boundary-layer equations for the steady laminar flow of a vertical jet, includ- 
ing a buoyancy term caused by temperature differences, are solved by similarity 
methods. Two-dimensional and axisymmetric jets are treated. Exact solutions in 
closed form are found for certain values of the Prandtl number, and the velocity 
and temperature distribution for other Prandtl numbers are found by numerical 
integration. 

1. Introduction 
The problem investigated here is that of a heated fluid jet flowing vertically up- 

ward from an orifice into a region of the same fluid, which, apart from the in- 
fluence of the jet, is at rest and at  a uniform temperature. The flow through the 
orifice is produced by a pressure difference, and immediately upon emergence the 
fluid in the jet is subjected to a buoyant force which arises as a result of the differ- 
ence in temperature between the jet and the surrounding fluid. Both the two- 
dimensional case, representing a jet emerging from a long narrow slit, and the 
axisymmetric case, representing flow from a circular opening are considered. 

The flow is assumed to be steady and la,minar, with the variation of density 
small enough to permit the use of the incompressible equations of motion modi- 
fied only by the inclusion of a buoyancy term. It is also assumed that the rates 
of change of velocity components and temperature in the streamwise direction 
are much less than in the transverse directions. Thus the boundary-layer approxi- 
mations to the momentum and energy equations apply. Frictional heating of the 
fluid is neglected. 

These assumptions require that the Reynolds and Grashof numbers, based on 
a transverse dimension of the jet, be of the same order of magnitude and much 
larger than unity. The product of the volume coefficient of expansion and the 
mean temperature difference must be small. The assumptions and the consequent 
requirements on the physical characteristics of the jet are discussed in more 
detail in $4. 

The free jet problem, without the effect of buoyancy, was solved by Schlichting 
(1933) and by Bickley (1937) by methods very similar to that employed here, and 
experimental confirmation was obtained by Andrade ( 1939). The differential 
equations for the present problem are the same as those for natural convection 
along a vertical hot plate, a problem studied in considerable detail by Sparrow & 
Gregg (1958). 
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2. The two-dimensional jet 
A system of rectangular co-ordinates (2, y) is chosen such that the x-axis co- 

incides with the symmetry axis of the jet. The boundary-layer equations, express- 
ing the conservation laws of mass, momentum, and energy are: 

aupx + avpy = 0, (2.1) 

(3.2) 

(2.3) 

In these equations, u and v are velocity components, and I3 is a dimensionless 
temperature difference reiated to the local temperature, T(x, y), and to the tem- 
perature far from the jet, T,, by 

0 = (T- T,)/T,. (3.4) 

Other constants appearing in the equations are: v, the kinematic viscosity; p, the 
coefficient of volume expansion; g, the acceleration of gravity; and IT, the Prandtl 
number. 

Boundary conditions to be satisfied are: 

The continuity equation (2.1) implies the existence of a stream function, 

(3.7) 
$(x,y), such that 

= a$lay, v = -a$lax. 

The partial differential equations are reduced to ordinary equations by means 
of the following transformation: 

7 = uyxa-1, (2.8) 

$ = avxUf(7), (3.9) 
e = u4v2(g~~~)-1X4"-3p(r). (2.10) 

The arbitrary constant, a, is included so as to make r ,  f(7) andp(7) dimensionless. 
It can be chosen so as to match the mathematical solution to a particular physical 
case. The exponent, a, is, in a sense, an eigenvalue, in that non-trivial solutions of 
the equations which satisfy the boundary conditions exist only for a specific value 
of the exponent. 

When the momentum and energy equations are transformed according to (3.7), 
(2.8), (2.9) and (2.10), there results: 

f "+af f" - (2a-  l)(ff)2+p = 0, 

p 'I + aafp' + (3 - 4a) af fp = 0. 

Boundary conditions in terms off and p are 

(2.11) 

(2.12) 

f ( 0 )  = f "(0) = pf(0) = 0, 

f'(co) =p(m) = 0. 

(2.13) 

(2.14) 
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The constant a is determined by an integration of the energy equation (2.12), 
which may be written 

:~+cc- ( fp)+(3-5Ba)f ’p  d = 0. 

drl 
(2.15) 

Because of the boundary conditions, (2.13) and (2.14), integration of (2.15) over 
the interval (0, co) gives 

( 3 - 5 4  f ’ p d y  = 0. (2.16) 

Since p and f’ are never negative, the only way in which (2.16) can be satisfied is 

c ( = 5  5 ‘  (2.17) 

With this value of a, equation (2.12) can be integrated once, and the governing 
equations for the problem become 

som 

j”’”’’-$(f’)Z+p = 0, 

p’+ tafp = 0. 

The velocity components and the temperature are related to f and p by 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2 .22)  

3. Exact and numerical solutions 
Exact solutions for the system (2.18), (2.19), which satisfy the boundary con- 

ditions (2.13) and (2.14), have been found for u = 2 and u = $. Ifp is assumed 
related to f by 

equation (2.18) becomes 
P = iW2 + “f02 +ff”I, (3.1) 

f ” + ( t + b ) f f ” + ( ~ + b ) ( f ’ ) z  = 0, (3.2) 

which has the integral f ” + ( f + b ) f f ’ =  0. (3.3) 

The same assumption forp, equation (3. l ) ,  is now substituted in the energy equa- 
tion (2.19), with the result, 

Inspection of this equation shows that for certain values of b and c~ any function 
which satisfies (3.3) also satisfies (3.4). The appropriate values of b and u are: 

case (i) b = 0, u = 2; 

case (ii) b = -&, a = 5 9-  

In  case (i), the coefficient of the first bracketed expression in (3.4) vanishes, and 
the second bracketed expression becomes identical with (3.3), which is, in this 
case, 

(3.5) f ”  + jff’ = 0. 
20-2 
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The solution of (3.5) and the corresponding expression for p from (3.1) are 

R. S.  Brand and F .  J .  Lahey 

f = tanh(&v), (3.6) 

(3.7) 

In case (ii), the bracketed expressions in (3.4) become identical to the left sides 

p = &sech4(* 1 0v)- 

of (3.2) and (3.3). The solution-for this case is 

f = tanh (&), 

p = &sech2 (47). 
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FIGURE 1. Two-dimensional jet. f vs. 7 for several values of V. 
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FIGURE 2. Two-dimensional jet. f' vus. 7 for several values of 6. 
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Numerical integrations of equations (2.18) and (2.19), subject to boundary 
conditions (2.13) and (2.14), were carried out for several values of the Prandtl 
number, A forward integration scheme employing Runge-Kutta fourth-order 
formulas was used. The solutions are shown in figures 1-4. 

FIGURE 3. Two-dimensional jet. p vs. 7 for two values of U .  

0.08 

0 

7 

FIGURE 4. Two-dimensional jet. p m. 7 for several values of b. 
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The value off’(0) used a t  the outset of the numerical integration is arbitrary, 
and corresponding to each choice off’(0) there is a resulting value off(co). That 
solution was chosen which resulted inf(Oo) = 1. 

4. Interpretation of the solution 
From the solutions for f, f’ and p ,  one may compute the velocity components 

and the temperature from equations (2.20), (2.21) and (2.22). However, the con- 
stant, a, and the location of the origin of x have not as yet been specified. Both of 
these quantities are related to the initial conditions of the jet, and can be chosen 
so as to match the mathematical solution to a particular physical experiment. 

Suppose that at some station, the velocity and the temperature profiles are 
measured. Then at some x, say x = xo, the mathematical solution must match the 
measured profiles, at least in an average sense. For instance, if W is the measured 
volume flow rate, and E is the integral of the measured temperature profile (and 

6 - 
9 0.0367 
0-72 0.0452 
1.0 0.0575 
2.0 0-0888 
5.0 0.1124 
10.0 0.1335 

TAB~X 1 

is thus a measure of the thermal energy in the jet), one can select a and xo so as 
to make the corresponding integrals of the mathematical solution equal to the 
measured quantities, 

2JOm [T(xo, y) - T,] dy = E .  

When equations (2.20) and (2.22) are substituted in (-.l) ant 
may be solved for a and xo : 

2axt = W/v, 

(4.1). 

(4.2), the results 

(4.3) 

(4.4) 

(4.5) 

The value of xo locates the origin of the co-ordinate system, and the mathematical 
solutions may be assumed to represent the actual jet flow accurately for x 2 xo. 

Values of the integral in equations (4.4) and (4.5) are presented in table 1 for 
several Prandtl numbers. 
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It should be noted that the centre-line velocity increases with x ,  

u(x,O) N x i ,  (4.6) 

u(x ,  0) N x-5. (4.7) 

as contrasted with the isothermal jet, in which 

This implies that the buoyant force more than balances the viscous drag and pro- 
duces an upward acceleration of the fluid. However, if the amount of heating is 
small, E is small, and x,, is large. Since the solution is valid only for x 2 xo, the 
smaller the amount of heating the smaller the acceleration. 

The validity of the assumptions may be checked by comparing the orders of 
magnitude of various terms. In  order to test the boundary-layer assumption, one 
compares au/ax and &lay and finds 

If the width of the jet at x = xo is 2h, and the mean velocity at this station is U,, 
then 

W = 2U0h, (4.9) 
and W/ZV = Uoh/v = R. (4.10) 

Hence, if R 9 1, au/ax < au/ay, except, at  the centre line where f” vanishes. 
One also would like assurance that the similarity solution is not too different 

from the measured jet profile a t  x = xo. For this to be true the value of 7 at y = h, 
x = xo, must be such that the fluid velocity as given by the similarity solution at 
this point is much less than at  the centre line. From figures 2 and 4 it is seen that, 
at least for the larger Prandtl numbers, f ’  < f ’ (0)  and p < p ( 0 )  when 7 2 4. Let 

(4.11) us take, then 
7(xo,h) 2 4. 

This leads to 

where G is the Grashof number, 

G = SPATo h3 V-2, 

(4.12) 

(4.13) 

and AT, is the mean temperature difference at the location x = xo. The result 
(4.12) indicates that the Grashof and Reynolds numbers must be comparable. 

Justification of the neglect of compressibility is based on an examination of the 
continuity equation, which for a compressible fluid may be written 

(4.14) 

A comparison of the neglected terms with those retained leads to the conclusion 
that for (2.1) to be a valid approximation to (4.14), it is necessary for 

PATo < 1. (4.15) 

The requirements that PAT, be small and G be large are not contradictory, as 
may be seen by a numerical example. If PAT, is of order and G is of order 
102, the jet width, h, must be a few tenths of an inch, if the fluid is air at room 
temperature. 
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5. The axisymmetric jet 
Analysis of the axisymmetric heated jet is completely analogous to the two- 

dimensional problem. The x-axis is now the jet axis, and y is the radial co-ordinate. 
With the other quantities defined as before, the boundary-layer equations are: 

Boundary conditions to be satisfied are : 

a t  y=m;  u = B = O .  

The continuity equation is again integrated by means of a stream function, 

1 alC. 1 alC. 
Y aY y ax ’ ? 2 ’= - - -  u = -- 

and introduction of a similarity transformation, 

71 = ayx“, 

lC. = v M 7 ) ,  

(5.1) 

( 5 . 2 )  

(5.4) 

(5.5) 
(5.6) 

(5.7) 

leads to the ordinary differential equations 

Boundary conditions on f and p are: 

f ( 0 )  = f ’ ( O )  = p’(0) = 0,  

pD(a) = lim[f‘(7)/71 = 0. 

p(0 )  is finite, 

7-* 

(5.10) 

(5.11) 

(5.12) 

The similarity exponent, a, is determined by integrating the energy equation 
(5.9), which may be written 

d/dy(7p’/a + f p )  - (2 + 4a)f’p = 0. (5.13) 

Integration from zero to infinity and application of the boundary conditions give 

(2 + 4a) j -omfpdr  = 0, 
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which can be satisfied only by taking 

a =  -1 2 ’  (5.14) 

Equation (5.13) now has a first integral, and the governing equations become 

d ld7( f  It -f ’17) +ff “I7 -ff !IT2 + 7P = 0, 
7p’ + vfp = 0. 

(5.15) 

(5.16) 

The velocity components in terms off are 

u = a”vf’/q, (5.17) 

(5.18) v = a v x t  [if’ + ( f / ~ ) ] .  

” 
0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 

rl 

FIGURE 5 .  Axisymmetric jet. f us. 9 for several values of u. 

Exact solutions for the system (5.15), (5.16), are possible for certain Prandtl 

(5.19) 
numbers. If one assumes 

f = bT2/(b + V2)Y 

then integration of (5.16) provides p : 

p = c(b + ~ 1 2 ) - ~ ~ b .  (5.20) 

Formulas (5.19) and (5.20) satisfy equation (5.15) only for the following choices 
of cr, b and c: 

case (i) cr = 1, b = 6, c = 576; 

case (ii) r~ = 2, b = 4, c = 1,024. 

Numerical integration of (5.15) and (5.16) for several other values of the Prandtl 
number provides the family of solutions shown in figures 5-7. 

From the solutions for f and p ,  one may compute the velocity components and 
the temperature from equations (5.17), (5.18) and (5.11). The constant a, and the 
location of the origin of x can be chosen in an identical way with that of the two- 
dimensional jet. Suppose that at some x ,  say x = xo, the velocity and temperature 
profiles are measured. Then if W is the measured volume flow rate and E is the 
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integral of the measured temperature distribution, one can select a and zo so as to 
make the corresponding integrals of the mathematical solution equal to  the 
measured quantities 

2.0 

(5.21) 

(5.22) 

" 0  0.5 1.0 1.5 2.0 2.5 
v 

FIGURE 7. Axisymmetric jet. p vs. 11 for several values of g. 
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When equations (5.7) and (5.17) are substituted into (5.21) and (5 .22) ,  the result- 
ing equations may be solved for a and x,, 

(5.23) 

(5.24) 

The value of xo now locates the origin of the co-ordinate system, and the mathe- 
matical solutions may be assumed to represent the actual jet flow for x b xo. 

Values of f(m) and the integral in (5.23) are presented in table 2 for several 
Prandtl numbers. 

U f (a) 
0.72 8.062 4.937 
1.0 6.000 3.852 
2.0 4.000 2.667 
5-0 3.375 1-738 

10.0 3.143 1.125 

TABLE 2 
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